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The influence of clustering on the collision rate of inertial particles in a smooth random velocity field,
mimicking the smaller scales of a turbulent flow, is analyzed. For small values of the ratio between the
relaxation time of the particle velocity and the characteristic time of the field, the effect of clusters is to make
more energetic collisions less likely. The result is independent of the flow dimensionality and is due only to the
origin of collisions in the process of caustic formation.
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The transport of finite size particles in turbulent flows is a
common occurrence in several environments: raindrops in
clouds �1�, plankton in oceans �2�, sprays in industrial flows
�3�, to name some examples. Due to inertia, these particles
undergo clustering phenomena that have been observed in
numerical simulations �4�, experiments �5�, and have been
the subject of substantial theoretical study �6,7,9–11�.

Although contributing to particle segregation �12�, spatial
inhomogeneities in the turbulence do not appear to be an
essential factor. What seems to be important is the ability of
the particles to catch one another in their motion as they slip
with respect to the fluid, a circumstance that is most evident
in one dimension �1D� �13,14�. In more than 1D, the process
is more complicated and an important role is played by the
preferential concentration of heavy �light� particles in the
strain �vortical� regions of the flow �6�.

An important motivation for the interest in clustering is
the contribution to particle collision and coalescence, and it
has been suggested that this is an important ingredient in the
process of rain formation �1,15�. What is observed is the
simultaneous onset of concentration fluctuations and in-
creased collision rates, when the relaxation time of the par-
ticle velocity relative to the fluid becomes of the order of the
turnover time of the fastest turbulent eddies �15�. For suffi-
ciently small �and sufficiently dense� spherical particles, this
relaxation time is the Stokes time �S=1 /18 a2� /�0, where a
is the particle diameter, � is the ratio of the particle to fluid
density, and �0 is the kinematic viscosity of the fluid �16�.

When inertia is sufficiently high, the so-called sling effect
ensues �17�: particle and fluid trajectories detach on the scale
of eddies with turnover time �S, and their velocity will deter-
mine the particle collision velocity.

The collision rate Rcoll depends both on the particle con-
centration n�x , t� and on the relative velocity � in the particle
pairs; for binary collisions

Rcoll � a2�n�a�n�0�����r = a� , �1�

with r the particle separation. �Similar expressions will hold
for the coalescence rate, with a more complicate function of
� in the conditional average.� Thus, both the sling effect and
clustering, through the factors �� �r� and �n�a�n�0��, respec-
tively, may be expected to enhance collisions. It was sug-
gested in �17,18�, however, that the dominant contribution to
collision may be the sling effect and there is even some

indication �19� that clustering may hinder rather than en-
hance collisions.

The problem of how clustering and the dynamics of the
two-particle velocity distribution in general influence each
other, is far from trivial, with caustic formation potentially
playing an important role �17,20�. The purpose of this Rapid
Communication is to understand whether it is possible to
identify a clustering contribution to the velocity dynamics,
and if this is associated with collision enhancement or hin-
dering.

Let us consider the dynamics of an inertial particle sus-
pension in a smooth incompressible random velocity field
u�x , t�, with correlation time �E, variance �u�

2�=�u
2, �

=1,2 ,3, and correlation length rv��u�E. Particles in a tur-
bulent flow, with �S shorter than the Kolmogorov time, here
identified with �E, will see turbulence precisely in this way,
and this is appropriate for most aerosols of atmospheric in-
terest �1,17�. Conversely, the opposite regime �S��E could
be interpreted as a model for the effect of eddies at scale rv
on particles with �S corresponding to the turnover time of
larger eddies. This limit is more relevant for industrial flows
than for rain formation, as the relative motion of larger drop-
lets in clouds is dominated by the different gravitational set-
tling velocities of droplets of different size �1�.

The two regimes of large and small Stokes number S
=�S /�E are qualitatively different, with the clustering maxi-
mum occurring somewhere at S	1 �6,21�. For small S, the
particle phase is monodisperse in velocity over most of the
fluid volume �7,8�. The sling effect, due to the spatial corre-
lation of u, occurs in coherent way through the formation of
caustics, i.e., regions of crossing of particle jets with differ-
ent velocity �17�. The two-particle dynamics, relevant for the
description of clustering and binary collision, is described by
the equation for the velocity difference �S�̇+�=
ru,

ru�x , t�	u�x+r , t�−u�x , t�, and, for S�1, ��2 �r�
���
ru�2�→0 for r→0 �clearly, ��2 ���=��

2 =2�u
2�. Neglect-

ing caustics would lead to O�S� collision rates, as predicted
in the theory of Saffman and Turner �22�. The multivalued
velocity distribution in caustics appears to be crucial in pro-
ducing high enough collision rates.

In the opposite limit S1, the particles are scattered by
the velocity fluctuations they cross in their motion as if un-
dergoing Brownian diffusion �23�. In the S1 limit, the ve-
locity difference equation can be approximated by a stochas-
tic differential equation �SDE� in the following form,
choosing units such that �S=�u=1:
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�̇� + �� = b���r���, ṙ� = ��, �2�

where b���r�b���r�= �4 /S��g���0�−g���r��, g���r�
=�u

−2�u��r , t�u��0, t��, and �� is the white noise,
����t����0��=�����t�. In the incompressible case ��g���r�
=0. For S1, the majority of particles pair at r=0, and will
have been at rrv for most of the previous time interval of
length ��S of which they have memory, so it is possible to
set, in the first approximation, b�r�
b���. This leads to a
Brownian collision dynamics with a velocity distribution of
width ���S−1/2�u.

Let us consider the effect of clusters on the collision ve-
locity of the particle pairs in the small Stokes number re-
gime. This regime could be analyzed within an SDE ap-
proach, imposing an artificially short correlation time to the
random field �E��u /rv. This is a Kraichnan model regime
�24�, in which the role of effective correlation time is played
by the diffusion time for a pair of tracers, �̃E=rv

2 / ��u
2�E�, to

reach separation rv. We have therefore an effective Stokes
number

� = �S/�̃E = �S�E�u
2/rv

2, �3�

and it is possible to have a small-� large-S regime, in which
Eq. �2� continues to be valid. The small � regime has been
the subject of extensive study �see, e.g., �11,14,20��. For
small �, the particle phase is still monodisperse away from
caustics, only with velocity not locally equal to that of the
random field, as is instead �to first approximation� in the S
�1, �E�rv /�u regime.

For small �, Eq. �2� leads to r changing little in a time �S
�the correlation time for �� and caustics arise as extreme
events, in which a strong fluctuation in the random field
causes particle pairs to jump ballistically to zero separation
in a time ��S �14,20�. Clusters affect the process privileging
particle pairs that are initially closer, i.e., less energetic fluc-
tuations in 
ru, leading to smaller collision velocities �25�.
We give a quantitative description of this effect for D=1 and
�r��rv.

For �→0, the shapes of the pair trajectories terminating
with a given collision velocity will concentrate around the
one that maximizes probability �no condition is imposed on
the caustics in which the trajectories develop�. To determine
the most likely trajectory ending with collision velocity
��t�= �̄ at t=0, one can proceed iteratively, from some initial
guess for the separation history, say r0�t�= �̄t. �We assume
immaterial particles, so that they can overlap without inter-
action.� For a smooth field, we can take for �r��rv�,�r�
1
−��r /rv�2 with �=O�1�, which gives b�r���1/2r. For �r�
�rv, at the kth step in the iteration procedure, the first of Eq.
�2� will then read, apart from an O�1� factor in front of the
right-hand side �RHS� �̇k+�k=�1/2rk�, leading to the solution

�k�t� = �1/2�
−�

t

d�e�−trk������� , �4�

where ṙk=�k−1, rk�0�=0, k�0. The minimum problem will
be, therefore,

�†ln P��� + �k�k�0�‡ = 0, �5�

where � indicates variation in �, P��� is the probability den-
sity function �PDF� of the history ��t� with t� �−� ,0�, �k is
the Lagrange multiplier to enforce �k�0�= �̄, and the rk enter-
ing �k is assigned from the previous iteration. From P���
=exp(− 1

2��2�t�dt) and Eq. �4�, the minimum problem, Eq.
�5�, leads to the history �k�t�=�k�

1/2etrk�t�.
Substituting �k into Eq. �4� and imposing ��0�= �̄ gives

the velocity profile �k�t� in the function of rk, which, substi-
tuting into ṙk+1=�k leads to the iterative relation for rk�t�,

rk+1�t� = �̄1 − ��
−�

0

d�e2�rk����−1

� ��
−�

t

d�e2�−trk
2��� + �

t

0

d�e�rk
2����� . �6�

The iterative scheme can be implemented numerically and
converges rapidly. In particular, the starting point of a jump
terminating in a collision at velocity �̄ is r�̄


 limk→� rk�−�� and one finds from Eq. �6� r�̄
−7�̄�S. The
rather large factor 7 implies that the jump does not start from
a spatially localized “kick,” rather, the sling acts over an
O��̄�S� distance equivalent to that of the final free flight.

From the same condition ��0�= �̄, one finds �k
= ���−�

0 d�e2�rk����−1�̄, which, substituted into �k�t�
=�k�

1/2etrk�t�, together with rk� �̄, gives for the noise his-
tory �k��−1/2 and therefore the PDF of observing a collision
velocity �̄ in a given pair will be, for a�r�̄: �jump��̄ �a�

�jump��̄ �0��P��k��exp�−c /��, with c a constant that can
be shown to be 1 /6 in 1D �14�. The PDF of the collision
velocity �̄ in the given pair, generated by a jump originating
at separation r will be instead �jump��̄ �0���r− �̄T�, where T

7�S.

Multiplying by the PDF ��r� of finding a pair at separa-
tion r, and integrating over r, gives the PDF of a collision at
velocity �̄

�coll��̄� = ��r�̄��jump, �7�

with the cluster contribution contained in the PDF for the
particle pair separation ��r�̄�. A collision velocity �̄ implies a
permanence time ���̄�−1 in an interval dr, and this allows one
to write the collision velocity PDF �that is the collision rate
at that velocity� in the form

�coll��̄� � ���̄,a���̄� = ��a����̄�a���̄� . �8�

This in turn can be substituted into Eq. �1� exploiting the
relation, valid in D generic, �n�r�n�0��=�n̄2��r�, with � the
domain volume and n̄ the mean concentration.

In 1D, ��r��r−2 �14�, so that �coll��̄���̄−2, as confirmed
in Fig. 1. In the absence of clustering, in comparison, the
distribution would have been uniform and �exp�−c /�� up to
��̄��rv /�S.

This picture extends to D�1, as the extremal trajectories
are still straight lines, and the relevant parameter remains the
separation r�̄ at the start of the jump. In this case the finite
particle size must be taken into account and a jump ending in
a collision will develop along a straight line that does not
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necessarily pass through the center of the other particle. The
probability of a jump originating at r leading to collision will
be proportional therefore to the angle with which a particle is
seen at distance r, i.e., �a /r�D−1. Nevertheless, if a�r�̄, the
collision velocity PDF, i.e., the PDF for the velocity in the
direction of the jump at the other particle position, could be
approximated as �jump�� �a�
�jump�� �0�.

Now, the number of particles in a shell at distance r
will be ���r�rD−1dr, where the PDF ��r�, provided
limr→0 rD��r���, is related to the correlation dimension D2
of the distribution by the equation ��r�rD�r−D�Nr

2��rD2,
with Nr the number of particles in a volume of linear size r.
Taking the product of the different contributions, the prob-
ability of collisions at velocity between �̄ and �̄+d�̄ there-
fore will be

�coll��̄�d�̄ � �jump��̄�0���r�̄�aD−1dr�̄, �9�

where r�̄= �̄T for some T=O��S�. If, as in the 1D case,
�jump�� �0� is independent of �, the following result will hold:

�coll��̄� � �̄D2−D. �10�

Simulating the trajectories of an ensemble of inertial par-
ticles in a 2D Kraichnan random field leads to the result in
Fig. 2, which confirms the prediction of Eq. �10�. The peak
to the left is produced by the finite size of the particles, in the
present case a
1 /2056 of the domain size. Its width is
��2 �a�1/2�a�� /rv �the typical relative velocity at separation
a� and its height is a factor �exp�c /�� above the scaling
range to the right, which is associated with the jumps.

As illustrated in Fig. 3, the collisions actually take place
between clusters. The scaling D2�D causes closer clusters
and therefore less energetic collisions to be more likely. No-
tice that, although clustering hinders high velocity collisions,
higher velocities are actually more probable inside clusters.
The reason is purely statistical: higher particle concentrations
are produced where clusters collide, i.e., by definition a place
where � is larger.

For large Stokes numbers, collisions cease to occur as
extreme events; hence, the correspondence between collision
velocities and jump lengths disappears, and the predictions

of Eqs. �7� and �10� cease to be valid. In this limit, the
particle velocity distribution ceases to be monodisperse
pointwise �near caustics, it would be a superposition of dis-
crete jets� and particle velocities at close separations are in
the first approximation independent. It was suggested in �19�
that concentration fluctuations are produced by slowly ap-
proaching particle pairs, which spend a significant time at
separations r	rv. To verify this, however, it is necessary to
separate out a cluster contribution in the velocity PDF
��� �r�, analogous to the one identified in Eqs. �8�–�10�, or
equivalently in the relation ���̄ ,a�� ��̄�−1�jump��̄ �a���r�̄�.

Notice that the simultaneous increase of ��r� and decrease
in ��2 �r� as r→0 is not sufficient to conclude that concen-
tration fluctuations are associated with smaller relative ve-
locities; in fact, limr→0��2 �r�=0 also for passive scalars in
incompressible flows, in which case, concentration fluctua-
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FIG. 1. Collision velocity PDF for the 1D problem �̇+�
=�1/2�r+���, ṙ=�, compared to �=�−2 �upper line�. Values of the
parameters �=0.04 and �=0.02 �a finite molecular diffusivity is
necessary to regularize the dynamics at r→0�.
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FIG. 2. Collision velocity PDF in 2D from a sample of 105

particles with �=0.04, advected by a smooth Kraichnan random
field in a square domain 3rv�3rv. The almost straight line is ��r�
=r−2�Nr

2� �appropriately rescaled�, corresponding to a correlation
dimension D2
1.45.
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FIG. 3. A snapshot of the particle distribution from the numeri-
cal simulation of Fig. 2, superimposed to the pattern of relative
velocities �the small segments�, which identify the caustics. The
length and direction of the segments correspond to the largest ei-
genvalue and associated eigenvector of the correlation matrix
��i� j �x , t�, calculated as average on the particles in a box of size a
at x.
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tions are absent. An alternative approach is therefore re-
quired.

As carried on in �26�, a clustering part in ���̄ , r̄�
= �����t�− �̄���r�t�− r̄�� could be identified in the higher or-
der contributions from the expansion of r�t� around the
Brownian motion limit. The analysis in �26� indicates a
strong dependence on compressibility of the random field,
and that the conclusion of the present paper, that clustering
decreases collision velocities, remains valid at large S only
for compressible flows. As in the small � regime, however,

this clustering contribution cannot be identified with the ac-
tual velocity distribution inside the clusters, and is more in
the form of a nonlocal cluster contribution to the velocity
dynamics.
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